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Arbitrary-amplitude electrostatic traveling structures in a plasma
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A fluid model of a plasma in the case of a general polytropic process is considered. An alternative
method of analysis of electrostatic traveling structures to the formalism of the Sagdeev pseudopoten-
tial [Rev. Plasma Phys. 4, 23 (1966)] is used to obtain an existence domain for compressive solitons
and to establish the absence of rarefactive solitons and monotonic double layers in a two-component

plasma.

PACS number(s): 52.35.Mw, 52.35.Sb

I. INTRODUCTION

The study of arbitrary-amplitude traveling structures
(such as solitons, double layers, etc.) in plasmas has
been a subject of considerable interest in recent years.
The assumption of the arbitrariness of the structure am-
plitude makes the Korteweg—de Vries equation inappli-
cable, and one should use the more general fluid model.
Starting from the work of Ref. [1], the traveling struc-
ture solutions of fluid equations were usually analyzed
using the formalism of the Sagdeev pseudopotential. It
was shown [2] (in the approximation of Boltzmann elec-
trons and cold ions) that plasmas consisting of single ion
and electron components do not admit rarefactive soli-
tons, though the question of their existence in a more
general case remained open. Recently there appeared
many papers studying traveling structures in multicom-
ponent plasmas [3,4]. The question of special interest was
the domain of existence of such solutions. Numerical in-
vestigation [5,6] has shown the existence of considerable
restrictions on the range of parameters for such solutions
to be possible.

It is found from theory [7-10] and experiments [11-13]
that the particle distribution within a kink (double layer)
can be classified into trapped and free groups. (Hereafter
by a kink we mean a monotonic transition layer.) This
implies that in a fluid model of a two-component plasma
kinks do not occur, though a rigorous mathematical proof
of this fact has not been given.

In this article we study the existence conditions for
the traveling structures without using the conventional
method of the Sagdeev pseudopotential. The outline of
the paper is as follows. In Sec. II we introduce the fluid
model of a plasma. In Sec. III we perform a partial inte-
gration of the model using a “traveling structure” ansatz.
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This results in two constraints on the density configura-
tions. The first one defines a line and the second defines
a region in density space. In Sec. IV we restrict ourselves
to a two-component plasma and formulate a necessary
and sufficient condition for the existence of solitons and
kinks in terms of the mutual geometrical locations of the
constraints on the density plane. As a by-product of this
consideration we establish the non-existence of rarefac-
tive solitons. In Sec. V we show that a two-component
plasma with the same thermodynamic properties of the
components cannot support double layers. The domain
of existence of compressive solitons is found in Sec. VI
Finally, Sec. VII is devoted to concluding remarks.

II. MODEL

The plasma is assumed to be infinite, homogeneous,
collisionless, unmagnetized, and quasineutral. The sys-
tem of plasma fluid equations is then given by

Bt T oc O (2.12)
Ov; Ov; Op 9¢

(2.1¢)

Here n;, mj,ej,v;,and p; are the density, mass, charge,
velocity, and pressure of the species j, respectively. To
obtain a closed system one should add an equation of
state. We assume a general polytropic process

p.fj = const, (2.2)
n.-:
3
where «; is the polytropic index.
We assume the following boundary conditions:
o¢
(;5, —8_.’1:’1)'1 — 0; n; — 505 Dj — njoTj, (2.3)
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as ¢ — —oo. Here Tj; is the background temperature
and the unperturbed density njo satisfies the neutrality

condition
E ejnjo = 0.
J

(2.4)

III. ARBITRARY-AMPLITUDE TRAVELING
STRUCTURES

We look for traveling structure solutions propagat-
ing with a constant velocity u. It is advantageous to
transform to a moving frame making the transformation
&=z — ut.

Equation (2.1a) can then be readily integrated, yield-

ing
vj =u(1— @) .
nj

Substituting this into Eq. (2.1b) we obtain

v;i—1 2
n; \ n; on; ¢

(3.1)
Equation (3.1) can be integrated to give
)2
T;lnz; + it (m]_z —1) = —e;¢ (3.2a)
for an isothermal process (v; = 1) or
’)’T 1 m 'U2 —
—J—J—(wz’ -1) 4+ —Z (mj 2—1)=—e;¢ (3.2b)

v~ 1 2

for an anisothermal process (y; # 1), where z; =
nj/mnjo are the normalized densities. Eliminating ¢ from
Egs. (3.2) we obtain

~;T; _ mu® , _
S ey o0+ T )
vi#l

a2
+ Z [Tj Inz; + m;“ (z7% - 1)] njo = 0. (3.3)

v;=1

This equation defines a curve in a space of normalized
densities j, which we shall further refer to as a trajectory
of the solution. We denote the left-hand side of Eq. (3.3)
by T (x).

On the other hand, summing Eq. (3.1) over all types
of species, using the Poisson equation (2.1c), and inte-
grating we obtain

2
Vi 2/ —1 1 (0¢
Xj: [T = 1) + myu(z5" = D] njo = o (3¢ | -

(3.4)
We denote the left-hand side of Eq. (3.4) as B(x). Since

(8¢/0€)? > 0, configurations with densities satisfying the
inequality B < 0 are not allowed. The boundary of this
region of “impossibility of motion” is defined by

Z [Tj (l‘;’J — 1) + mj’ll,z(:tj_l — 1)] njo = 0.
J

(3.5)

IV. TWO-COMPONENT PLASMA

We restrict ourselves to the plasma consisting of two
species 7 = 1,2. In this case both the trajectory and the
boundary are curves in the plane of the densities (z1-z2).
Let k£ and [ be fixed indices, k = 1 or 2, l = 3 — k. The
trajectory and the boundary curves can be represented
as solutions of autonomous differential equations [differ-
entiating Egs. (3.3) and (3.5), respectively]

dzy e ')’kaIEZk—z — mkuzwgs (4.1

dzy ey ’lelle,—z — muzy® 1)
and

dze e Y Tez* ~H — mpula, (4.2)

dzy e Ty~ — mpulzy® | ’

respectively, with the initial condition z4(0) = z4(0) =
1.

The initial point (1,1) belongs both to the trajectory
and the boundary. This is also a point where they have
a common tangent,

d:l:tl _ dmbl

- d:Ek

e [T — mpu?
B Ty — myu?

] . (4.3)

dxy

zEp=1 zp=1 €k

We denote [mju?/(v;T5)]Y 3+ by a;. For 0 < gy <
+o00 the curves defined by Egs. (3.3) and (3.5) are closed.
The extrema of z; are achieved at xz3_; = as_j, since
here the derivatives dz;/dz3_; vanish (Fig. 1). Accord-
ing to Eq. (3.1), the derivatives dx;/d€ become infinite
when z; = ;. Therefore, the solution exists only on the
part of the trajectory falling into the quadrant bounded
by the lines z; = «; and containing the initial point

3

0

FIG. 1. Typical form of the “boundary” on the zi-z2 plane
in the case a2 < 1, a1 > 1.
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(permissible quadrant).

We shall now estimate the “escape time” from the
points of the boundary. By escape time we mean the
range of { needed for a finite change in densities z;. Ex-
pressing 9¢/9¢ from Eq. (3.4) and substituting it into
Eq. (3.1) results in

= :Fej\/SwZnio [Ti(z) — 1) + miu®(z; ! — 1)].
' (4.4)

Let (51, 5r2) be a point of the boundary and s # o;.
Introducing new variables v; = z; — 3; and taking into
account that

_ ., .€3—j
Vz_j; = Vj
€5

L Y2 2
'y]TJ;rj m;iu

-3
*
2 3
— mg_juzx3_j

. L Y8 —3
'73—]T3—31‘f3_j

+O(Vj2),
due to Eq. (4.1), we can write Eq. (4.4) as

—2 dl/j

dg
= Fe;[8mnjov;(33—; — ;)

x (mju’se; ® — Tj'yj}r;“_2) + O/

., Y _ 2,3
('yJTJJ{j mju’ s )

We observe that for 31y = 55 ,

%’g = ta;jv; + O(v]), a; >0, (4.5)
and for 57 # 519,

dv;

= bVl + 01w, (46)

Equation (4.5) implies that v; behaves like an expo-
nential function. It vanishes when £ — oo, hence the
trajectory may leave or enter points with s; = 3 in an
infinite “time.” On the other hand, Eq. (4.6) yields a
finite time of entry (escape) for the points with s # 3.
Assuming z; = z3 in Eq. (3.5), one can verify that the
boundary and the bisector £; = x5 can have at most two
common points. The infiniteness of the escape time for
the point (1,1) proves the consistency of the boundary
conditions (2.3).

At positive infinity the solution can have two differ-
ent types of behavior. It can either end at the second
point with the infinite escape time (z; = z2 # 1) or
reach a turning point on the boundary where z; # z»
[at this point the sign of the right-hand side of Eq. (4.4)
changes] and return to the point (1,1). In the first case
the solution will have the form of a kink, while the sec-
ond case corresponds to a symmetric (with respect to &)
solitary structure (soliton). In both cases the solution
satisfying boundary conditions (2.3) exists if and only
if the following two conditions hold: (i) the trajectory
touches the region B < 0 at the initial point (1,1) on the

outer side (the escape condition) and (ii) the trajectory
intersects (touches at ;7 = z2 # 1 in the case of a kink)
the boundary in the permissible quadrant. The escape
condition can be written in terms of second derivatives
at the initial point,

2 2
i% d m;l if o >1, (4.7a)
dzk =1 dmk =1

2 2

¢ oy & oy if o<1 (4.7b)
dmk zp=1 dmk zr=1

In view of Eqgs. (4.1)—(4.3) these conditions can be re-
duced to

dzy
dzk

_ d.’I}bl

0< <1 for a;>1,ar<1.

d:l!k

zE=1 =1

(4.8)

In the case a;,as > 1 the escape condition can never be
satisfied, while in the case aj,as < 1 it always holds.

Let us suppose that the escape condition is satisfied,
i.e., in the neighborhood of the initial point the trajectory
is in the region B > 0. The requirement of intersection
will then be fulfilled if the trajectory is in the region
B < 0 when it reaches one of the lines z; = «; (the
boundaries of the permissible quadrant). To show that
this condition is also necessary we will prove that the
trajectory can intersect the boundary in the permissible
quadrant only once.

Let

2 3

Y1—2 =
_d(xe2 — zp2) _ eemThiz) — myulc]
- - Y2 —
dz, e1 vTox/;

2 2

f(il?l)

2 —_
— mguzxtza

v1—1 =
ez 1Tiz{ — miux]

. 4.9
€1 'szg:cZ;_l — maulzy)? (4.9)
f(z1) is the derivative of the difference g(z;) = z42(x1) —
Zp2(z1), which is a single-valued function of z; in the
permissible quadrant. Note that f(1) = 0. Assuming
that escape conditions (4.7a) and (4.7b) hold, we obtain
that

sgn f(1 + &) = sgn(d) sgn(l — as) (4.10)

for sufficiently small §. On the other hand, at a common
point of the boundary and trajectory where ;2 = T2 =
T2,

_ €2 '71T1$g m-111+1 — a¥1+1 1 ﬂ (4 11)
f(xl) - T. 3 4241 N2+l - . .
€1 v21L2%7 z, — Qg T2

We first show that in the case as,a; < 1 the tra-
jectory and the boundary have no points of intersection
in the permissible quadrant, which is now defined by
(z1 > o1,z2 > az). Let (z},z3) be the point of inter-
section of the boundary and the trajectory immediately
to the right of the initial point 3 < 1 < z}]. Equation
(4.10) then implies that f(1+0) > 0, i.e., g(z1) emerges
from zero while increasing and it has to decrease when it
reaches its next zero, and so f(z}) < 0. Hence, according
to Eq. (4.11), =3 > =7, which contradicts the assumption



2404

made above. The same argument can be applied if the
point of intersection (z},z3) is assumed to be immedi-
ately to the left of the initial point.

Let us now analyze the case az < 1, a; > 1 (Fig. 1).
Again let (z},xz3) be the point of intersection immedi-
ately to the right of the initial point z} > 1. Again
Eq. (4.10) implies that f(1+ 0) > 0 and so f(z}) < 0.
However, this time Eq. (4.11) yields 3 < z}. Note that
condition (4.8) implies that dz2/dz; > 1 and hence the
bisector £; = 2 intersects the boundary between z; = 1
and x; = z]. Suppose there exists another point of in-
tersection (z1*,z3*) to the right of (z3},z}), zi* > z}.
Then g(z;) reaches its zero at z}* while increasing, i.e.,
f(z3*) > 0, and consequently z3* > z}*. This means
that the line z; = z should again intersect the bound-
ary, which is impossible.

If (z7,23) is the point of intersection immediately to
the left 7 < 1, then, since f(1 — 0) < 0, we have
f(z}) > 0. Hence z3 > z}. This, however, contradicts
the condition dzy/dz; > 1, which implies that this point
lies below the bisector, i.e., 3 < z}.

The case as > 1,a; < 1 can be obtained from the
previous case by the formal change of indices. As a result
the trajectory and the boundary can have only one point
of intersection in the permissible quadrant and only in
the case when oy < 1, ap > 1. Moreover, if (z},z3) is
such a point of intersection, zi, > 1. In this case the
sufficient condition of intersection, which now becomes
also necessary, can be expressed as the inequality

-Ttl(ak) < xbl(ak). (4.12)
Note that the condition z} , > 1 means that densities can
only increase, i.e., rarefactive solitons are not allowed.

V. AN EXCLUSION OF MONOTONIC DOUBLE
LAYERS

Apart from solitons, the analysis of Sec. IV gave us
another possible type of traveling structure, viz., a kink.
Such a solution would exist if and only if the second com-
mon point of the boundary and trajectory in the permis-
sible quadrant belongs also to the line ; = z,. We shall
further assume vy; = v, = y. Assuming z; = 5 = z in
Egs. (3.3) and (3.5) for the trajectory and the boundary
results in

-1+

(5.1a)

and

e’ —1+a(z ' —1) =0, (5.1b)

where
__ MiNyio + Mango u?

T Tyingo + Tengo

A kink can exist only for such v and a that a system of
equations (5.1a) and (5.1b) has a solution = # 1. Mul-
tiplying Eq. (5.1a) by z? and subtracting it from Eq.
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(5.1b), multiplied by z, results in

-1 1
z? (1+’Y2'y a)—x(a+1)+72—: a=0.

The roots of this quadratic equation are
(y+1a

=1, zp=_——1"2%

o T2+ (r-1a

5 solves the system (5.1) if and only if it solves
Eq. (5.1b). Expressing a through z,,

2z
(Y+1) —z2(y—1)’

we rewrite Eq. (5.1b) as

e +1 +1
g(:l}z) d=f$; (.’L’z—:——*—)-—l-f—l‘zz_ = 0.

(5.3)

Since g(1) = 0 while g'(z2) # 0 for z2 # 1, 5 = 1 is
the only root in accordance with Rolle’s theorem. Con-
sequently z = 1 is the only common root of Egs. (5.1a)
and (5.1b).

For an isothermal process (y =
Egs. (5.1a) and (5.1b), we have

1), instead of

e+ 3 (72 -1) =0, (5.4a)
z—1+a(z'—1)=0. (5.4b)

Equation (5.4b) has two roots z; = 1 and z» = a. Sub-
stituting = a into Eq. (5.4a) we obtain

ma=1(a-?
na—2 a el

Using the same consideration as for Eq. (5.3) we find that
a =1 is the only root of Eq. (5.5). This proves that the
model in question cannot support monotonic transition
layers.

(5.5)

VI. EXISTENCE DOMAIN FOR COMPRESSIVE
ION-ACOUSTIC SOLITONS

Let us call a j type of particle in the plasma ions (¢)
if a; > 1 or electrons (e) if a; < 1. A condition neces-
sary and sufficient for the existence of compressive soli-
tons is given by Eqgs. (4.8) and (4.12). We introduce
the dimensionless parameters p = m./m;, 1 = nio/nco,
T = T;/Te, 0 = v?/V? = m;u?/T., where V, is ion
acoustic speed. Since a. = (fu/v.)/ =+ < 1 and
a; = [0/(m)]Y*) > 1, 0 and T satisfy 7 < 0/v;
and 0 < v./p.

The escape condition (4.8) written in our dimensionless
parameters is

g
T<_(1+&)_7_e, o<2e .
Yi n Yin H
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Equation (6.1) gives the left margin of the existence do-
main (the thick straight line in Fig. 2).

The boundary of the region defined by Eq. (4.12) is
given by

Tie(as) = Tpe(as), (6.2)

where Tpe(a;) and x4 (;) are the greater roots of equa-
tions T (Z¢e, ;) = 0 and B(xpe, @;) = 0 respectively. (We
should choose the greater roots, since we consider only
those parts of the trajectory and the boundary that fall
into the permissible quadrant.) Hence Eq. (6.2) is a
compatibility condition of these equations.

Ion-acoustic solitons are stable and propagate with a
constant speed only if 7 < 1; otherwise their amplitude
and hence speed decrease due to Landau damping. Then
Vr, > u (Vr; = /2T;/m; is the thermal velocity of par-
ticle species j) and hence the variations in the electron
temperature are very small. Accordingly, the polytropic
index for electrons is very close to that of an isothermal
process 7. = 1. The ion-acoustic velocity, on the other
hand, although less, can be of the same order as a struc-
ture speed. Hence the process for ions can be naturally
approximated as an adiabatic.

For an isothermal electron, v, = 1 and an anisothermal
ion v; = v # 0, Tpe(;) and 4. (;) are found from

Op (- YN -
T(zteaai)=ln$e+7($62_1)+7*1 (0!,7 1_1)

+0—’7(a;2—1) =0

4 (6.3)

and

B(@be, i) = e — 1+ 6p (27" = 1) + 7y (o] — 1)
+6n (a;* —1) =0, (6.4)

according to Egs. (3.3) and (3.5). Equation (6.4) pro-
duces a quadratic equation
z2 —zb+c=0, (6.5)

where b = 1+p6+6n (1 — ai_l)+'r17 (1-a])>0,c=0u.

0 0.5 1 1.5 2 2.5 ©

FIG. 2. Domain of existence of compressive ion-acoustic
solitons for an electron-proton plasma on the 7-9 plane,
T=T/T, ¥ = 'm.,"u,z/Te = uz/V,Z. The domain is bounded
by the thick lines.

To prove the positiveness of b it suffices to show that

0(1—a;Y)y+7(1—af) >0, (6.6)

where a; = [0/(7v)]"/("*1). Introducing a variable q =
0/7, Eq. (6.6) becomes

[1 +q— q?% ('y«/% + 'y_fh)] T=p(g)Tr > 0. (6.7)

Equation (6.7) always holds, since at ¢ = v, p(q)
achieves its minimum p(y) = 0.

Hence the greater root of Eq. (6.5) is ¢, = b +
Vb% — 4ac/2a. Accordingly, Eq. (6.2) is equivalent to

Ou , _ YT _
1nm++?(z+2—1)+ n(azl——l)

(6.8)

Equation (6.8), as one can verify, is satisfied on a line
segment 7 = 0/, 0 < 6 < v/u (thin straight line in
Fig. 2). A numerical solution shows that Eq. (6.8) is also
satisfied on another line that gives the right margin of
the existence domain (Fig. 2) (thick curve in Fig. 2).

VII. CONCLUDING REMARKS

We have obtained the following important results for
a fluid model of a two-component plasma.

(1) The model does not admit monotonic transition
layers in the case of a plasma consisting of two types of
particles which have the same thermodynamic properties
(71 = 72)-

(2) The model does not admit rarefactive solitons.

(3) Compressive ion-acoustic solitons exist only in the
domain defined by Egs. (6.1) and (6.8).

In Fig. 2 we present the domain of existence of com-
pressive solitons in a plasma consisting of a single isother-
mal electron species and a single adiabatic proton species,
u=1/1836, ve = 1, v; = 5/3. These solitons are super-
sonic, ¥ > 1. Let us note that the right boundary of the
domain for 7 = 0 (cold ions) corresponds to the speed
u =~ 1.58V,, which coincides with the standard result of
Sagdeev [1].

For low ion temperature the domain of existence
sharply shrinks with the temperature growth. Conse-
quently, even comparatively low ion temperature cannot
be neglected.

In this paper we assumed that the polytropic indices
are constants and do not depend on other parameters.
This is in fact a simplification of the reality, since poly-
tropic indices do depend on parameters such as the ratio
of the structure speed and the thermal velocity of par-
ticles, the structure amplitude, etc. The natural way
to deal with this would be to use kinetic theory, where
there is no need to make assumptions about the depen-
dence of polytropic indices. Although this approach is
more physical, it seems to be much too difficult to obtain
even the most simple, general conclusions about prop-
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erties of traveling structures. Also there seem to be no
visible possibilities of obtaining useful analytical results
using the kinetic approach.

We did not consider solutions with trajectories inter-
secting the lines z; = o;. However, we note that such
solutions may be possible and would correspond to shock
waves. The analysis of shock waves requires the use of the
appropriate integral relations and lies beyond the scope
of the present work.
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